Тригонометрические функции числового аргумента. Свойства и графики тригонометрических функций






































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  1. Выработка умений и навыков применения тригонометрических формул для упрощения тригонометрических выражений.
  2. Реализация принципа деятельностного подхода в обучении учащихся, развитие коммуникабельности и толерантности учащихся, умения слушать и слышать других и высказывать своё мнение.
  3. Повышение интереса учащихся к математике.

Тип урока: тренировочный.

Вид урока: урок отработки навыков и умений.

Форма обучения: групповая.

Тип групп : группа, сидящая вместе. Ученики разного уровня обученности, информированности по данному предмету, совместимые учащиеся, что позволяет им взаимно дополнять и обогащать друг друга.

Оборудование: доска; мел; таблица «Тригонометр»; маршрутные листы; карточки с буквами (А, В, С.) для выполнения теста; таблички с названиями экипажей; оценочные листы; таблицы с названиями этапов пути; магниты, мультимедийный комплекс.

Ход урока

Ученики сидят по группам: 4 группы по 5-6 человек. Каждая группа – это экипаж машины с названиями, соответствующими названиям тригонометрических функций, во главе с рулевым. Каждому экипажу выдаётся маршрутный лист и определяется цель: пройти заданный маршрут успешно, без ошибок. Урок сопровождается презентацией.

I. Организационный момент.

Учитель сообщает тему урока, цель урока, ход урока, план работы групп, роль рулевых.

Вступительное слово учителя:

Ребята! Запишите число и тему урока:«Тригонометрические функции числового аргумента».

Сегодня на уроке мы буде учиться:

  1. Вычислять значения тригонометрических функций;
  2. Упрощать тригонометрические выражения.

Для этого нужно знать:

  1. Определения тригонометрических функций
  2. Тригонометрические соотношения (формулы).

Известно давно, что одна голова хорошо, а две лучше, поэтому вы сегодня работаете в группах. Известно также, что дорогу осилит идущий. Но мы живём в век скоростей и время дорого, а значит можно сказать так: «Дорогу осилит едущий», поэтому сегодня урок у нас пройдёт в виде игры «Математическое ралли». Каждая группа – это экипаж машины, во главе с рулевым.

Цель игры:

  • успешно пройти маршрут каждому экипажу;
  • выявить чемпионов ралли.

Название экипажей соответствует марке машины, на которой вы совершаете пробег.

Представляются экипажи и их рулевые:

  • Экипаж – «синус»
  • Экипаж – «косинус»
  • Экипаж – «тангенс»
  • Экипаж – «котангенс»

Девиз гонки: «Торопись медленно!»

Вам предстоит совершить пробег по «математической местности» со множеством препятствий.

Маршрутные листы каждому экипажу выданы. Преодолеть препятствия смогут экипажи, которые знают определения и тригонометрические формулы.

Во время пробега каждый рулевой руководит экипажем, помогая, и оценивая вклад каждого члена экипажа в преодоление маршрута в виде «плюсов» и «минусов» в оценочном листе. За каждый правильный ответ группа получает «+», неправильный «-».

Вам предстоит преодолеть следующие этапы пути:

I этап. ПДД (правила дорожного движения).
II этап. Техосмотр.
III этап. Гонка по пересечённой местности.
IV этап. Внезапная остановка – авария.
V этап. Привал.
VI этап. Финиш.
VII этап. Итоги.

И так в путь!

I этап. ПДД (правила дорожного движения).

1) В каждом экипаже рулевые раздают каждому члену экипажа билеты с теоретическими вопросами:

  1. Расскажите определение синуса числа t и его знаки по четвертям.
  2. Расскажите определение косинуса числа t и его знаки по четвертям.
  3. Назовите наименьшее и наибольшее значения sin t и cos t.
  4. Расскажите определение тангенса числа t и его знаки по четвертям.
  5. Расскажите определение котангенса числа t и его знаки по четвертям.
  6. Расскажите, как найти значение функции sin t по известному числу t.

2) Соберите «рассыпавшиеся» формулы. На тайной доске таблица (см. ниже). Экипажи должны привести в соответствие формулы. Ответ каждая команда записывает на доске в виде строки соответствующих букв (парами).

а tg 2 t + 1 е 1
в tg t ж cos t / sin t, t ≠ к, кZ.
д sin 2 t + cos 2 t и 1/ sin 2 t, t ≠ к, кZ.
ё ctg t к 1,t ≠ к / 2, кZ.
з 1 + ctg 2 t г sin t /cos t, t ≠ /2 + к, кZ.
й tg t ∙ctg t б 1/ cos 2 t, t ≠ /2 + к, кZ.

Ответ: аб, вг, де, ёж, зи, йк.

II этап. Техосмотр.

Устная работа: тест.

На тайной доске написано: задание: упростить выражение.

Рядом записаны варианты ответов. Экипажи определяют правильные ответы за1 мин. и поднимают соответствующий набор букв.

Выражение Варианты ответов
А В С
1. 1 – cos 2 t cos 2 t - sin 2 t sin 2 t
2. sin 2 t – 1 cos 2 t - cos 2 t 2 cos 2 t
3. (cos t – 1)(1+ cos t) -sin 2 t (1+ cos t) 2 (cos t – 1) 2

Ответ: С В А.

III этап. Гонка по пересечённой местности.

3 минуты экипажам на совещание по решению задания, а далее представители экипажей пишут решение на доске. Когда представители экипажей закончат записывать решение первого задания, все ученики (вместе с учителем) проверяют правильность и рациональность решений и записывают в тетрадь. Рулевые оценивают вклад каждого члена экипажа знаками « + » и « – » в оценочных листах.

Задания из учебника:

  • Экипаж – «синус»: № 118 г;
  • Экипаж – «косинус»: № 122 а;
  • Экипаж – «тангенс»: № 123 г;
  • Экипаж – «котангенс»: № 125 г.

IV этап. Внезапная остановка – авария.

Ваш автомобиль сломался. Необходимо устранить неисправность вашего автомобиля.

Для каждого экипажа приведены высказывания, но в них допущены ошибки. Найдите эти ошибки и объясните, почему они были допущены. В высказываниях используются тригонометрические функции, соответствующие маркам ваших машин.

V этап. Привал.

Вы устали и должны отдохнуть. Пока экипаж отдыхает рулевые подводят предварительные итоги: считают «плюсы» и «минусы» у членов экипажа и в целом у экипажа.

Для учеников:

3 и более «+» – оценка «5»;
2 «+» – оценка «4»;
1 «+» – оценка «3».

Для экипажей: «+» и «-» взаимно уничтожаются. Считаются только оставшиеся знаки.

Отгадайте шараду .

Из чисел вы мой первый слог возьмите,
Второй – из слова «гордецы».
А третьим лошадей вы погоните,
Четвёртым будет блеянье овцы.
Мой пятый слог такой же, как и первый,
Последней буквой в алфавите является шестой,
А если отгадаешь ты всё верно,
То в математике раздел получишь ты такой.
(Три-го-но-ме-три-я)

Слово «тригонометрия» (от греческих слов «тригонон» – треугольник и «метрео» – измеряю) означает «измерение треугольников». Возникновение тригонометрии связано с развитием географии и астрономии – науки о движении небесных тел, о строении и развитии Вселенной.

В результате произведённых астрономических наблюдений возникла необходимость определения положения светил, вычисления расстояний и углов. Так как некоторые расстояния, например, от Земли до других планет, нельзя было измерить непосредственно, то учёные стали разрабатывать приёмы нахождения взаимосвязей между сторонами и углами треугольника, у которого две вершины расположены на земле, а третью представляет планета или звезда. Такие соотношения можно вывести, изучая различные треугольники и их свойства. Вот почему астрономические вычисления привели к решению (т. е. нахождению элементов) треугольника. Этим и занимается тригонометрия.

Зачатки тригонометрии были обнаружены в древнем Вавилоне. Вавилонские учёные умели предсказывать солнечные и лунные затмения. Некоторые сведения тригонометрического характера встречаются в старинных памятниках других народов древности.

VI этап. Финиш.

Чтобы успешно пересечь линию финиша осталось поднапрячься и совершить «рывок». Очень важно в тригонометрии уметь быстро определять значения sin t, cost, tgt, ctg t, где 0 ≤ t ≤ . Учебники закрыть.

Экипажи поочерёдно называют значения функций sin t, cost, tgt, ctg t , если:

VII этап. Итоги.

Итоги игры.

Рулевые сдают оценочные листы. Определяется экипаж, ставший чемпионом «Математического ралли» и характеризуется работа остальных групп. Далее называются фамилии тех, кто получил оценки «5» и «4».

Итоги урока.

– Ребята! Чему вы сегодня научились на уроке? (упрощать тригонометрические выражения; находить значения тригонометрических функций). А что для этого нужно знать?

  • определения и свойства sin t, cos t, tg t, ctg t;
  • соотношения, связывающие значения различных тригонометрических функций;
  • знаки тригонометрических функций по четвертям числовой окружности.
  • значения тригонометрических функций первой четверти числовой окружности.

– Я думаю, что вы поняли, что формулы нужно хорошо знать, чтобы их правильно применять. Вы также поняли, что тригонометрия очень важная часть математики, так как она применяется в других науках: астрономии, географии, физике и др.

Домашнее задание:

  • для учеников получивших «5» и «4»: §6, №128а, 130а, 134а.
  • для остальных учеников: §6, №119г, №120г, №121г.

Тригонометрические функции числового аргумента.

Тригонометрические функции числового аргумента t – это функции вида y = cos t,
y = sin t, y = tg t, y = ctg t.

С помощью этих формул через известное значение одной тригонометрической функции можно найти неизвестные значения других тригонометрических функций.

Пояснения .

1) Возьмем формулу cos 2 t + sin 2 t = 1 и выведем с ее помощью новую формулу.

Для этого разделим обе части формулы на cos 2 t (при t ≠ 0, то есть t ≠ π/2 + πk ). Итак:

cos 2 t sin 2 t 1
--- + --- = ---
cos 2 t cos 2 t cos 2 t

Первое слагаемое равно 1. Мы знаем, что отношение синуса к конисусу – это тангенс, значит, второе слагаемое равно tg 2 t. В результате мы получаем новую (и уже известную вам) формулу:

2) Теперь разделим cos 2 t + sin 2 t = 1 на sin 2 t (при t ≠ πk ):

cos 2 t sin 2 t 1
--- + --- = ---, где t ≠ πk + πk , k – целое число
sin 2 t sin 2 t sin 2 t

Отношение косинуса к синусу – это котангенс. Значит:


Зная элементарные основы математики и выучив основные формулы тригонометрии, вы легко сможете самостоятельно выводить большинство остальных тригонометрических тождеств. И это даже лучше, чем просто зазубривать их: выученное наизусть быстро забывается, а понятое запоминается надолго, если не навсегда. К примеру, необязательно зазубривать, чему равна сумма единицы и квадрата тангенса. Забыли – можно легко вспомнить, если вы знаете самую простую вещь: тангенс – это отношение синуса к косинусу. Примените вдобавок простое правило сложения дробей с разными знаменателями – и получите результат:

sin 2 t 1 sin 2 t cos 2 t + sin 2 t 1
1 + tg 2 t = 1 + --- = - + --- = ------ = ---
cos 2 t 1 cos 2 t cos 2 t cos 2 t

Точно так же легко можно найти сумму единицы и квадрата котангенса, как и многие другие тождества.

Тригонометрические функции углового аргумента.

В функциях у = cos t , у = sin t , у = tg t , у = ctg t переменная t может быть не только числовым аргументом. Ее можно считать и мерой угла – то есть угловым аргументом.

С помощью числовой окружности и системы координат можно легко найти синус, косинус, тангенс, котангенс любого угла. Для этого должны быть соблюдены два важных условия:
1) вершиной угла должен быть центр окружности, который одновременно является центром оси координат;

2) одной из сторон угла должен быть положительный луч оси x .

В этом случае ордината точки, в которой пересекаются окружность и вторая сторона угла, является синусом этого угла, а абсцисса этой точки – косинусом данного угла.

Пояснение . Нарисуем угол, одна сторона которого – положительный луч оси x , а вторая сторона выходит из начала оси координат (и из центра окружности) под углом 30º (см.рисунок). Тогда точка пересечения второй стороны с окружностью соответствует π/6. Нам известны ордината и абсцисса этой точки. Они же являются косинусом и синусом нашего угла:

√3 1
--; --
2 2

А зная синус и косинус угла, вы уже легко сможете найти его тангенс и котангенс.

Таким образом, числовая окружность, расположенная в системе координат, является удобным способом найти синус, косинус, тангенс или котангенс угла.

Но есть более простой способ. Можно и не рисовать окружность и систему координат. Можно воспользоваться простыми и удобными формулами:

Пример : найти синус и косинус угла, равного 60º.

Решение :

π · 60 π √3
sin 60º = sin --- = sin -- = --
180 3 2

π 1
cos 60º = cos -- = -
3 2

Пояснение : мы выяснили, что синус и косинус угла 60º соответствуют значениям точки окружности π/3. Далее просто находим в таблице значения этой точки – и таким образом решаем наш пример. Таблица синусов и косинусов основных точек числовой окружности – в предыдущем разделе и на странице «Таблицы».

Какое бы действительное число t ни взять, ему можно поставить в соответствие однозначно определенное число sin t. Правда, правило соответствия довольно сложное, оно, как мы видели выше, заключается в следующем.

Чтобы по числу t найти значение sin t, нужно:

1) расположить числовую окружность в координатной плоскости так, чтобы центр окружности совпал с началом координат, а начальная точка А окружности попала в точку (1; 0);

2) на окружности найти точку, соответствующую числу t;

3) найти ординату этой точки.

Эта ордината и есть sin t.

Фактически речь идет о функции u = sin t, где t -- любое действительное число.

Все эти функции называют тригонометрическими функциями числового аргумента t.

Есть целый ряд соотношений, связывающих значения различных тригонометрических функций, некоторые из этих соотношений мы уже получили:

sin 2 t+cos 2 t = 1

Из двух последних формул легко получить соотношение, связывающее tg t и ctg t:

Все указанные формулы используются в тех случаях, когда, зная значение какой-либо тригонометрической функции, требуется вычислить значения остальных тригонометрических функций.

Термины «синус», «косинус», «тангенс» и «котангенс» на самом деле были знакомы, правда, использовали их до сих пор в несколько иной интерпретации: в геометрии и в физике рассматривали синус, косинус, тангенс и котангенс у г л а (а не

числа, как это было в предыдущих параграфах).

Из геометрии известно, что синус (косинус) острого угла -- это отношение катета прямоугольного треугольника к его гипотенузе, а тангенс (котангенс) угла -- это отношение катетов прямоугольного треугольника. Иной подход к понятиям синуса, косинуса, тангенса и котангенса развивали в предыдущих параграфах. На самом деле эти подходы взаимосвязаны.

Возьмем угол с градусной мерой б o и расположим его в модели «числовая окружность в прямоугольной системе координат» так, как показано на рис. 14

вершину угла совместим с центром

окружности (с началом системы координат),

а одну сторону угла совместим с

положительным лучом оси абсцисс. Точку

пересечения второй стороны угла с

окружностью обозначим буквой М. Ордина-

рис 14 б o , а абсциссу этой точки -- косинусом угла б o .

Для отыскания синуса или косинуса угла б o совсем не обязательно каждый раз делать указанные весьма сложные построения.

Достаточно заметить, что дуга AM составляет такую же часть длины числовой окружности, какую угол б o составляет от утла 360°. Если длину дуги AM обозначить буквой t, то получим:

Таким образом,

Например,

Считают, что 30° -- это градусная мера угла, а -- радианная мера того же угла: 30° = рад. Вообще:

В частности, рад, откуда, в свою очередь, получаем.

Так что же такое 1 радиан? Есть различные меры длин отрезков: сантиметры, метры, ярды и т.д. Есть и различные меры для обозначения величин углов. Мы рассматриваем центральные углы единичной окружности. Угол в 1° -- это центральный угол, опирающийся на дугу, составляющую часть окружности. Угол в 1 радиан -- это центральный угол, опирающийся на дугу длиной 1, т.е. на дугу, длина которой равна радиусу окружности. Из формулы, получаем, что 1 рад = 57,3°.

Рассматривая функцию u = sin t (или любую другую тригонометрическую функцию), мы можем считать независимую переменную t числовым аргументом, как это было в предыдущих параграфах, но можем считать эту переменную и мерой угла, т.е. угловым аргументом. Поэтому, говоря о тригонометрической функции, в определенном смысле безразлично считать ее функцией числового или углового аргумента.

Урок и презентация на тему: "Тригонометрическая функция числового аргумента, определение, тождества"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса
Алгебраические задачи с параметрами, 9–11 классы
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Определение числового аргумента.
2. Основные формулы.
3. Тригонометрические тождества.
4. Примеры и задачи для самостоятельного решения.

Определение тригонометрической функции числового аргумента

Ребята, мы знаем что такое синус, косинус, тангенс и котангенс.
Давайте посмотрим, можно ли через значения одних тригонометрических функций найти значения других тригонометрических функций?
Определим тригонометрическую функцию числового элемента, как: $y= sin(t)$, $y= cos(t)$, $y= tg(t)$, $y= ctg(t)$.

Вспомним основные формулы:
$sin^2(t)+cos^2(t)=1$. Кстати, как называется эта формула?

$tg(t)=\frac{sin(t)}{cos(t)}$, при $t≠\frac{π}{2}+πk$.
$ctg(t)=\frac{cos(t)}{sin(t)}$, при $t≠πk$.

Давайте выведем новые формулы.

Тригонометрические тождества

Мы знаем основное тригонометрическое тождество: $sin^2(t)+cos^2(t)=1$.
Ребята, давайте обе части тождества разделим на $cos^2(t)$.
Получим: $\frac{sin^2(t)}{cos^2(t)}+\frac{cos^2(t)}{cos^2(t)}=\frac{1}{cos^2(t)}$.
Преобразуем: $(\frac{sin(t)}{cos(t)})^2+1=\frac{1}{cos^2(t)}.$
У нас получается тождество: $tg^2(t)+1=\frac{1}{cos^2(t)}$, при $t≠\frac{π}{2}+πk$.

Теперь разделим обе части тождества на $sin^2(t)$.
Получим: $\frac{sin^2(t)}{sin^2(t)}+\frac{cos^2(t)}{sin^2(t)}=\frac{1}{sin^2(t)}$.
Преобразуем: $1+(\frac{cos(t)}{sin(t)})^2=\frac{1}{sin^2(t)}.$
У нас получается новое тождество, которое стоит запомнить:
$ctg^2(t)+1=\frac{1}{sin^2(t)}$, при $t≠πk$.

Нам удалось получить две новых формулы. Запомните их.
Эти формулы используются, если по какому-то известному значению тригонометрической функции требуется вычислить значение другой функции.

Решение примеров на тригонометрические функции числового аргумента

Пример 1.

$cos(t) =\frac{5}{7}$, найти $sin(t)$; $tg(t)$; $ctg(t)$ для всех t.

Решение:

$sin^2(t)+cos^2(t)=1$.
Тогда $sin^2(t)=1-cos^2(t)$.
$sin^2(t)=1-(\frac{5}{7})^2=1-\frac{25}{49}=\frac{49-25}{49}=\frac{24}{49}$.
$sin(t)=±\frac{\sqrt{24}}{7}=±\frac{2\sqrt{6}}{7}$.
$tg(t)=±\sqrt{\frac{1}{cos^2(t)}-1}=±\sqrt{\frac{1}{\frac{25}{49}}-1}=±\sqrt{\frac{49}{25}-1}=±\sqrt{\frac{24}{25}}=±\frac{\sqrt{24}}{5}$.
$ctg(t)=±\sqrt{\frac{1}{sin^2(t)}-1}=±\sqrt{\frac{1}{\frac{24}{49}}-1}=±\sqrt{\frac{49}{24}-1}=±\sqrt{\frac{25}{24}}=±\frac{5}{\sqrt{24}}$.

Пример 2.

$tg(t) = \frac{5}{12}$, найти $sin(t)$; $cos(t)$; $ctg(t)$, при всех $0

Решение:
$tg^2(t)+1=\frac{1}{cos^2(t)}$.
Тогда $\frac{1}{cos^2(t)}=1+\frac{25}{144}=\frac{169}{144}$.
Получаем, что $cos^2(t)=\frac{144}{169}$.
Тогда $cos^2(t)=±\frac{12}{13}$, но $0 Косинус в первой четверти положительный. Тогда $cos(t)=\frac{12}{13}$.
Получаем: $sin(t)=tg(t)*cos(t)=\frac{5}{12}*\frac{12}{13}=\frac{5}{13}$.
$ctg(t)=\frac{1}{tg(t)}=\frac{12}{5}$.

Задачи для самостоятельного решения

1. $tg(t) = -\frac{3}{4}$, найти $sin(t)$; $cos(t)$; $ctg(t)$, при всех $\frac{π}{2} 2. $сtg(t) =\frac{3}{4}$, найти $sin(t)$; $cos(t)$; $tg(t)$, при всех $π 3. $sin(t) = \frac{5}{7}$, найти $cos(t)$; $tg(t)$; $ctg(t)$ для всех $t$.
4. $cos(t) = \frac{12}{13}$, найти $sin(t)$; $tg(t)$; $ctg(t)$ для всех $t$.

Похожие статьи