Что называется изотопами. Представление об атомах как неделимых мельчайших частицах вещества

Наверное, нет на земле такого человека, который не слышал бы об изотопах. Но далеко не все знают, что это такое. Особенно пугающе звучит словосочетание «радиоактивные изотопы». Эти непонятные химические элементы нагоняют ужас на человечество, но на самом деле они не так страшны, как это может показаться на первый взгляд.

Определение

Чтобы разобраться с понятием радиоактивных элементов, необходимо для начала сказать, что изотопы - это образцы одного и тот же химического элемента, но с разной массой. Что это значит? Вопросы исчезнут, если для начала мы вспомним строение атома. Состоит он из электронов, протонов и нейтронов. Число первых двух элементарных частиц в ядре атома всегда постоянно, тогда как нейтроны, имеющие собственную массу, могут встречаться в одном и том же веществе в разных количествах. Это обстоятельство и порождает разнообразие химических элементов с разными физическими свойствами.

Теперь мы можем дать научное определение исследуемому понятию. Итак, изотопы - это совокупный набор похожих по свойствам химических элементов, но имеющих разную массу и физические свойства. Согласно более современной терминологии, они носят название плеяды нуклеотидов химического элемента.

Немного истории

В начале прошлого века ученые обнаружили, что у одного и того же химического соединения в разных условиях могут наблюдаться разные массы ядер электронов. С чисто теоретической точки зрения, такие элементы можно было посчитать новыми и начать заполнять ими пустые клеточки в периодической таблице Д. Менделеева. Но свободных ячеек в ней всего девять, а новые элементы ученые открывали десятками. К тому же и математические подсчеты показали, что обнаруженные соединения не могут считаться ранее не известными, ведь их химические свойства полностью соответствовали характеристикам уже существующих.

После длительных обсуждений было решено назвать эти элементы изотопами и помещать их в одну клеточку с теми, ядра которых содержат с ними одинаковое количество электронов. Ученым удалось определить, что изотопы - это всего лишь некоторые вариации химических элементов. Однако причины их возникновения и длительность жизни изучались еще почти целое столетие. Даже в начале XXI века утверждать, что человечество знает абсолютно все об изотопах, нельзя.

Стойкие и нестойкие вариации

Каждый химический элемент имеет несколько изотопов. Из-за того, что в их ядрах есть свободные нейтроны, они не всегда вступают в стабильные связи с остальными составляющими атома. Через некоторое время свободные частицы покидают ядро, из-за чего меняется его масса и физические свойства. Так образуются другие изотопы, что ведет в конце концов к образованию вещества с равным количеством протонов, нейтронов и электронов.

Те вещества, которые распадаются очень быстро, называются радиоактивными изотопами. Они выпускают в пространство большое количество нейтронов, образующих мощное ионизирующее гамма-излучение, известное своей сильной проникающей способностью, которая негативно влияет на живые организмы.

Более стойкие изотопы не являются радиоактивными, поскольку количество выделяемых ими свободных нейтронов не способно образовывать излучения и существенно влиять на другие атомы.

Достаточно давно учеными была установлена одна важная закономерность: у каждого химического элемента есть свои изотопы, стойкие или радиоактивные. Интересно, что многие из них были получены в лабораторных условиях, а их присутствие в естественном виде невелико и не всегда фиксируется приборами.

Распространение в природе

В естественных условиях чаще всего встречаются вещества, масса изотопа которых напрямую определяется его порядковым числом в таблице Д. Менделеева. К примеру, водород, обозначаемый символом Н, имеет порядковый номер 1, а его масса равна единице. Изотопы его, 2Н и 3Н, в природе встречаются крайне редко.

Даже человеческий организм имеет некоторое количество радиоактивных изотопов. Попадают они внутрь через пищу в виде изотопов углерода, который, в свою очередь, впитывается растениями из почвы или воздуха и переходит в состав органических веществ в процессе фотосинтеза. Поэтому и человек, и животные, и растения излучают определенный радиационный фон. Только он настолько низкий, что не мешает нормальному функционированию и росту.

Источниками, которые способствуют образованию изотопов, выступают внутренние слои земного ядра и излучения из космоса.

Как известно, температура на планете во многом зависит от ее горячего ядра. Но только совсем недавно стало понятно, что источником этого тепла выступает сложная термоядерная реакция, в которой участвуют радиоактивные изотопы.

Распад изотопов

Поскольку изотопы - это нестойкие образования, можно предположить, что они по прошествии времени всегда распадаются на более постоянные ядра химических элементов. Это утверждение верно, поскольку ученым не удалось обнаружить в природе огромного количества радиоактивных изотопов. Да и большинство из тех, которые были добыты в лабораториях, просуществовали от пары минут до нескольких дней, а потом снова превратились в обычные химические элементы.

Но есть в природе и такие изотопы, которые оказываются очень устойчивыми к распаду. Они могут существовать миллиарды лет. Образовались такие элементы в те далекие времена, когда земля еще формировалась, а на ее поверхности не было даже твердой коры.

Радиоактивные изотопы распадаются и вновь образуются очень быстро. Поэтому с той целью, чтобы облегчить оценку стойкости изотопа, учеными было принято решение рассматривать категорию периода его полураспада.

Период полураспада

Не всем читателям может быть сразу понятно, что имеется в виду под этим понятием. Определим же его. Период полураспада изотопа - это время, за которое перестанет существовать условная половина взятого вещества.

Это не означает, что оставшаяся часть соединения будет уничтожена за такое же количество времени. Применительно к этой половине необходимо рассматривать иную категорию - период времени, за который исчезнет ее вторая часть, то есть четверть изначального количества вещества. И такое рассмотрение продолжается до бесконечности. Можно предположить, что время полного распада изначального количества вещества посчитать просто невозможно, поскольку этот процесс практически бесконечен.

Однако ученые, зная период полураспада, могут определить, какое количество вещества существовало вначале. Эти данные успешно используются в смежных науках.

В современном научном мире понятие полного распада практически не используется. Относительно каждого изотопа принято указывать время его полураспада, которое варьирует от нескольких секунд до многих миллиардов лет. Чем меньше показатель полураспада, там большее излучение исходит от вещества и тем выше его радиоактивность.

Обогащение ископаемых

В некоторых отраслях науки и техники использование относительно большого количества радиоактивных веществ считается обязательным. Но при этом в естественных условиях таких соединений совсем немного.

Известно, что изотопы - это нераспространенные варианты химических элементов. Количество их измеряется несколькими процентами от самой стойкой разновидности. Именно поэтому ученым необходимо проводить искусственное обогащение ископаемых материалов.

За годы исследований удалось узнать, что распад изотопа сопровождается цепной реакцией. Освобожденные нейтроны одного вещества начинают влиять на другое. В результате этого тяжелые ядра распадаются на более легкие и получаются новые химические элементы.

Это явление получило название цепной реакции, в результате которой можно получить более стойкие, но менее распространенные изотопы, которые в дальнейшем используются в народном хозяйстве.

Применение энергии распада

Также учеными было выяснено, что в ходе распада радиоактивного изотопа выделяется огромное количество свободной энергии. Ее количество принято измерять единицей Кюри, равной времени деления 1 г радона-222 за 1 секунду. Чем выше этот показатель, тем больше энергии выделяется.

Это стало поводом для разработки способов использования свободной энергии. Так появились атомные реакторы, в которые помещается радиоактивный изотоп. Большая часть энергии, выделяемой им, собирается и превращается в электричество. На основании этих реакторов создаются атомные станции, которые дают самое дешевое электричество. Уменьшенные варианты таких реакторов ставят на самоходные механизмы. Учитывая опасность аварий, чаще всего такими машинами выступают подводные лодки. В случае отказа реактора количество жертв на подлодке будет легче свести к минимуму.

Еще один очень страшный вариант использования энергии полураспада - атомные бомбы. Во время Второй мировой войны они были испытаны на человечестве в японских городах Хиросима и Нагасаки. Последствия оказались очень печальными. Поэтому в мире действует соглашение о неиспользовании этого опасного оружия. В месте с тем большие государства с ориентацией на милитаризацию и сегодня продолжают исследования в этой отрасли. Кроме того, многие из них втайне от мирового сообщества изготавливают атомные бомбы, которые в тысячи раз опаснее тех, которые использовались в Японии.

Изотопы в медицине

В мирных целях распад радиоактивных изотопов научились использовать в медицине. Направив излучение на пораженный участок организма, можно приостановить течение болезни или помочь пациенту полностью излечиться.

Но чаще радиоактивные изотопы используют для диагностики. Все дело в том, что их движение и характер скопления проще всего зафиксировать по излучению, которое они производят. Так, в организм человека вводится определенное неопасное количество радиоактивного вещества, а по приборам медики наблюдают, как и куда оно попадет.

Таким образом проводят диагностику работы головного мозга, характера раковых опухолей, особенности работы желез внутренней и внешней секреции.

Применение в археологии

Известно, что в живых организмах всегда есть радиоактивный углерод-14, полураспад изотопа которого равен 5570 лет. Кроме того, ученные знают, какое количество этого элемента содержится в организме до момента его смерти. Это значит, что все спиленные деревья излучают одинаковое количество радиации. Со временем интенсивность излучения падает.

Это помогает археологам определить, как давно умерло дерево, из которого построили галеру или любой другой корабль, а значит, и само время строительства. Этот метод исследования получил название радиоактивного углеродного анализа. Благодаря ему ученым легче установить хронологию исторических событий.

Определенного элемента, имеющие одинаковый , но разные . Обладают ядрами с одинаковым числом и разл. числом , имеют одинаковое строение электронных оболочек и занимают одно и то же место в периодич. системе хим. элементов. Термин "изотопы" предложен в 1910 Ф. Содди для обозначения химически неразличимых разновидностей , отличающихся по своим физ. (прежде всего радиоактивным) св-вам. Стабильные изотопы впервые обнаружены в 1913 Дж. Томсоном с помощью разработанного им т. наз. метода парабол - прообраза совр. . Он установил, что у Ne имеется, по крайней мере, 2 разновидности с маc. ч. 20 и 22. Названиями и символами изотопов обычно служат названия и символы соответствующих хим. элементов; указывают сверху слева от символа. Напр., для обозначения прир. изотопов используют запись 35 Сl и 37 С1; иногда внизу слева указывают также элемента, т.е. пишут 35 17 Сl и 37 17 Cl. Только изотопы самого легкого элемента -водорода с маc. ч. 1, 2 и 3 имеют спец. названия и символы: (1 1 Н), (D, или 2 1 Н) и (Т, или 3 1 H) соответственно. Из-за большой разницы в массах поведение этих изотопов существенно различается (см. , ). Стабильные изотопы встречаются у всех четных и большинства нечетных элементов с [ 83. Число стабильных изотопов у элементов с четными номерами м. б. равно 10 (напр., у ); у элементов с нечетными номерами не более двух стабильных изотопов. Известно ок. 280 стабильных и более 2000 радиоактивных изотопов у 116 природных и искусственно полученных элементов. Для каждого элемента содержание отдельных изотопов в прир. смеси претерпевает небольшие колебания, к-рыми часто можно пренебречь. Более значит. колебания изотопного состава наблюдаются для метеоритов и др. небесных тел. Постоянство изотопного состава приводит к постоянству встречающихся на Земле элементов, представляющей собой среднее значение массы данного элемента, найденное с учетом распространенности изотопов в природе. Колебания изотопного состава легких элементов связаны, как правило, с изменением изотопного состава при разл. процессах, протекающих в природе ( , и т.п.). Для тяжелого элемента Рb колебания изотопного состава разных образцов объясняются разл. содержанием в , и др. источниках и - родоначальников естеств. . Различия св-в изотопов данного элемента наз. . Важной практич. задачей является получение из прир. смесей отдельных изотопов -

ИЗОТОПЫ (греч, isos равный, одинаковый + topos место)- разновидности одного химического элемента, занимающие одно и то же место в периодической системе элементов Менделеева, т. е. имеющие одинаковый заряд ядра, но различающиеся массами атомов. При упоминании об И. обязательно указывают, изотопом какого хим. элемента он является. Термин «изотоп» иногда употребляют и в более широком смысле - для описания атомов различных элементов. Однако для обозначения любого из атомов независимо от его принадлежности к тому или иному элементу принято использовать термин «нуклид».

Принадлежность И. к определенному элементу и основные хим. свойства определяются его порядковым номером Z или числом протонов, содержащихся в ядре (соответственно и одинаковым числом электронов в оболочке атома), а его ядерно-физ. свойства определяются совокупностью и соотношением числа входящих в него протонов и нейтронов. Каждое ядро состоит из Z протонов и N нейтронов, а общее число этих частиц, или нуклонов, составляет массовое число А = Z + N, определяющее массу ядра. Оно равно округленному до целого числа значению массы данного нуклида. Любой нуклид, т. о., определяется значениями Z и N, хотя некоторые радиоактивные нуклиды с одинаковыми Z и N могут находиться в различных ядерно-энергетических состояниях и различаться своими ядерно-физ. свойствами; такие нуклиды называются изомерами. Нуклиды с одинаковым числом протонов называются изотопами.

И. обозначаются символом соответствующего хим. элемента с расположенным вверху слева индексом А - массовым числом; иногда слева внизу приводится также число протонов (Z). Напр., радиоактивные И. фосфора с массовыми числами 32 и 33 обозначают: 32 P и 33 P или 32 P и 33 P соответственно. При обозначении И. без указания символа элемента массовое число приводится после обозначения элемента, напр. фосфор-32, фосфор-33.

У И. разных элементов может быть одно и то же массовое число. Атомы с различным числом протонов Z и нейтронов N, но с одинаковым массовым числом А называют изобарами (напр., 14 32 Si, 15 32 P, 16 32 S, 17 32 Cl- изобары).

Название «изотоп» предложено англ. ученым Содди (F. Soddy). Впервые существование И. было открыто в 1906 г. при изучении радиоактивного распада тяжелых естественно-радиоактивных элементов; в 1913 г. они были обнаружены и у нерадиоактивного элемента неона, а затем с помощью масс-спектрометрии был определен изотопный состав всех элементов периодической системы. В 1934 г. И. Жолио-Кюри и Ф. Жолио-Кюри впервые получили искусственно-радиоактивные И. азота, кремния и фосфора, а впоследствии с помощью различных ядерных реакций на нейтронах, заряженных частицах и фотонах высоких энергий были получены радиоактивные И. всех известных элементов и синтезированы радиоактивные И. 13 сверхтяжелых - трансурановых элементов (с Z≥ 93). Известно 280 стабильных, характеризующихся устойчивостью, и более 1500 радиоактивных, т. е. неустойчивых, И., которые с той или иной скоростью претерпевают радиоактивные превращения. Продолжительность существования радиоактивного И. характеризуется периодом полураспада (см.) - промежутком времени T 1/2 , в течение к-рого количество радиоактивных ядер уменьшается вдвое.

В природной смеси И. хим. элемента разные И. содержатся в разных количествах. Процентное содержание И. в данном хим. элементе называется их относительной распространенностью. Так, напр., в природном кислороде содержится три стабильных И.: 16O (99,759%), 17O(0,037%) и 18O (0,204%). Многие хим. элементы имеют только по одному стабильному И. (9 Be, 19 F, 23 Na, 31 P, 89 Y, 127 I и др.), а некоторые (Тс, Pm, Lu и все элементы с Z больше 82) не имеют ни одного стабильного И.

Изотопный состав природных элементов на нашей планете (и в пределах Солнечной системы) в основном постоянен, однако наблюдаются небольшие колебания в распространенности атомов легких элементов. Это объясняется тем, что различия в массах их И. относительно велики, и поэтому изотопный состав этих элементов изменяется под воздействием различных природных процессов, в результате изотопных эффектов (т. е. различия свойств хим. веществ, в которых содержатся эти изотопы). Так, изотопный состав ряда биологически важных элементов (Н, С, N, О, S) связан, в частности, с наличием биосферы и жизнедеятельностью растительных и животных организмов.

Различие в составе и структуре атомных ядер И. одного и того же хим. элемента (разное число нейтронов) определяет и различие их ядерно-физ. свойств, в частности то, что одни его И. могут быть стабильными, а другие - радиоактивными.

Радиоактивные превращения. Известны следующие виды радиоактивных превращений.

Альфа-распад - самопроизвольное превращение ядер, сопровождающееся испусканием альфа-частиц, т. е. двух протонов и двух нейтронов, образующих ядро гелия 2 4 He. В результате заряд Z исходного ядра уменьшается на 2, а общее число нуклидов или массовое число - на 4 единицы, напр.:

88 226 Ra -> 86 222 Ra + 2 4 He

При этом кинетическая энергия вылетающей альфа-частицы определяется массами исходного и конечного ядер (с учетом массы самой альфа-частицы) и их энергетическим состоянием. Если конечное ядро образуется в возбужденном состоянии, то кинетическая энергия альфа-частицы несколько уменьшается, а если распадается возбужденное ядро, то энергия альфа-частицы соответственно возрастает (при этом образуются так наз. длиннопробежные альфа-частицы). Энергетический спектр альфа-частиц дискретный и лежит в пределах 4-9 МэВ примерно для 200 И. тяжелых элементов и 2-4,5 МэВ для почти 20 альфа-радиоактивных И. редкоземельных элементов.

Бета-распад - самопроизвольное превращение ядер, при к-ром заряд Z исходного ядра изменяется на единицу, а массовое число А остается тем же. бета-распад представляет собой взаимопревращение входящих в состав ядра протонов (p) и нейтронов (n), сопровождающееся испусканием или поглощением электронов (е -) или позитронов (е +), а также нейтрино (v) и антинейтрино (v -). Существуют три вида бета-распада:

1) электронный бета-распад n -> p + e - + v - , сопровождающийся увеличением заряда Z на 1 единицу, с превращением одного из нейтронов ядра в протон, напр.

2) позитронный бета-распад p -> n + e + + v , сопровождающийся уменьшением заряда Z на 1 единицу, с превращением одного из протонов ядра в нейтрон, напр.

3) электронный захват p + е - -> n + v с одновременным превращением одного из протонов ядра в нейтрон, как и в случае распада с испусканием позитрона, также сопровождающийся уменьшением заряда на 1 единицу, напр.

Захват электрона при этом происходит с одной из электронных оболочек атома, чаще всего с ближайшей к ядру К-оболочки (К-захват).

Бета-минус-распад характерен для нейтроноизбыточных ядер, у которых число нейтронов больше, чем в устойчивых ядрах, а бета-плюс-распад и, соответственно, электронный захват - для нейтронодефицитных ядер, у которых число нейтронов меньше, чем у устойчивых, или так наз. бета-стабильных, ядер. Энергия распада распределяется между бета-частицей и нейтрино, в связи с чем бета-спектр не дискретный, как у альфа-частиц, а сплошной и содержит бета-частицы с энергиями от близких к нулю до нек-рой Еmax, характерной для каждого радиоактивного И. Бета-радиоактивные И. встречаются у всех элементов периодической системы.

Спонтанное деление - самопроизвольный распад тяжелых ядер на два (иногда 3-4) осколка, представляющих собой ядра средних элементов периодической системы (явление открыто в 1940 г. советскими учеными Г. Н. Флеровым и К. А. Петржаком).

Гамма-излучение - фотонное излучение с дискретным энергетическим спектром, возникает при ядерных превращениях, изменении энергетического состояния атомных ядер или при аннигиляции частиц. Испускание гамма-квантов сопровождает радиоактивное превращение в тех случаях, когда новое ядро образуется в возбужденном энергетическом состоянии. Время жизни таких ядер определяется ядерно-физ. свойствами материнского и дочернего ядер, в частности возрастает с уменьшением энергии гамма-переходов и может достигать относительно больших величин для случаев метастабильного возбужденного состояния. Энергия гамма-излучения, испускаемого разными П., лежит в пределах от десятков кэВ до нескольких МэВ.

Устойчивость ядер. При бета-распаде происходят взаимные превращения протонов и нейтронов до достижения наиболее энергетически выгодного соотношения p и n, что соответствует устойчивому состоянию ядра. Все нуклиды разделяются по отношению к бета-распаду на бета-радиоактивные и бета-устойчивые ядра. Под бета-устойчивыми понимаются либо стабильные, либо альфа-радиоактивные нуклиды, для которых бета-распад энергетически невозможен. Все бета-устойчивые И. у хим. элементов с атомными номерами Z до 83 стабильны (за несколькими исключениями), а у тяжелых элементов стабильных И. нет, и все их бета-устойчивые И. альфа-pадиоактивны.

При радиоактивном превращении происходит выделение энергии, соответствующее соотношению масс исходного и конечного ядер, массе и энергии испускаемого излучения. Возможность p-распада, происходящего без изменения массового числа А, зависит от соотношения масс соответствующих изобар. Изобары с большей массой в результате бета-распада превращаются в изобары с меньшей массой; при этом чем масса изобара меньше, тем он ближе к P-устойчивому состоянию. Обратный же процесс в силу закона сохранения энергии идти не может. Так, напр., для упомянутых выше изобар превращения идут в следующих направлениях с образованием стабильного изотопа серы-32:

Ядра нуклидов, устойчивых к бета-распаду, содержат не менее одного нейтрона на каждый протон (исключением являются 1 1 H и 2 3 He), а по мере возрастания атомного номера соотношение N/Z увеличивается и достигает значения 1,6 для урана.

С увеличением числа N ядро данного элемента становится неустойчивым по отношению к электронному бета-минус-распаду (с превращением n->p), поэтому нейтронообогащенные ядра бета-активны. Соответственно нейтронодефицитные ядра неустойчивы к позитронному бета+-распаду или электронному захвату (с превращением p->n), а у тяжелых ядер наблюдается также альфа-распад и спонтанное деление.

Разделение стабильных и получение искусственно-радиоактивных изотопов. Разделение И.- это обогащение природной смеси И. данного хим. элемента отдельными входящими в его состав И. и выделение чистых И. из этой смеси. Все методы разделения основаны на изотопных эффектах, т. е. на различиях физ.-хим. свойств разных И. и содержащих их хим. соединений (прочность хим. связей, плотность, вязкость, теплоемкость, температура плавления, испарения, скорость диффузии и т. д.). Способы разделения и основаны на различиях в поведении И. и содержащих их соединений в физ.-хим. процессах. Практически используются электролиз, центрифугирование, газовая и термодиффузия, диффузия в потоке пара, ректификация, хим. и изотопный обмены, электромагнитное разделение, разделение с помощью лазера и др. Если единичный процесс дает низкий эффект, т. е. малый коэффициент разделения И., его многократно повторяют до получения достаточной степени обогащения. Наиболее эффективно идет разделение И. легких элементов в связи с большими относительными различиями масс их изотопов. Напр., «тяжелую воду», т. е. воду, обогащенную тяжелым И. водорода- дейтерием, масса к-рого вдвое больше, в промышленном масштабе получают на электролизных установках; высокоэффективно также выделение дейтерия низкотемпературной дистилляцией. Разделение И. урана (для получения ядерного топлива - 235 U) проводят на газодиффузионных заводах. Широкий спектр обогащенных стабильных И. получают на электромагнитных разделительных установках. В некоторых случаях применяют разделение и обогащение смеси радиоактивных И., напр, для получения радиоактивного И. железа-55 с высокой удельной активностью и радионуклидной чистотой.

Искусственно-радиоактивные И. получают в результате ядерных реакций - взаимодействия нуклидов друг с другом и с ядерными частицами или фотонами, в результате которых происходит образование других нуклидов и частиц. Ядерная реакция условно обозначается следующим образом: вначале указывается символ исходного изотопа, а затем - образующегося в результате данной ядерной реакции. В скобках между ними первой указывается воздействующая, а за нею - вылетающая частица или квант излучения (см. табл., графа 2).

Вероятность осуществления ядерных реакций количественно характеризуется так называемым эффективным поперечным сечением (или сечением) реакции, обозначаемым греческой буквой о и выражаемым в барнах (10 -24 см 2). Для получения искусственно-радиоактивных нуклидов используют ядерные реакторы (см. Реакторы ядерные) и ускорители заряженных частиц (см.). Многие радионуклиды, применяемые в биологии и медицине, получают в ядерном реакторе по ядерным реакциям радиационного захвата, т. е. захвата ядром нейтрона с испусканием гамма-кванта (n, гамма), в результате чего образуется изотоп того же элемента с массовым числом, на единицу большим исходного, напр. 23 Na (n, γ) 24 Na, 31 P(n, γ) 32 Р; по реакции (n, γ) с последующим распадом полученного радионуклида и образованием «дочернего», напр. 130 Te (n, γ) 131 Te -> 131 I; по реакциям с вылетом заряженных частиц (n, p), (n, 2n), (n, α); напр., 14 N (n, p) 14 C; по вторичным реакциям с тритонами (t, p) и (t, n), напр. 7 Li (n, α) 3 H и затем 16O (t, n) 18 F; по реакции деления U (n, f), напр. 90 Sr, 133 Xe и др. (см. Ядерные реакции).

Некоторые радионуклиды либо вообще не могут быть получены в ядер-ном реакторе, либо такое их производство нерационально в медицинских целях. По реакции (n, γ) в большинстве случаев нельзя получить изотопы без носителя; некоторые реакции имеют слишком малую величину сечения a, a облучаемые мишени - малое относительное содержание исходного изотопа в природной смеси, что приводит к низким выходам реакций, недостаточной удельной активности препаратов. Поэтому многие важные радионуклиды, применяемые в клинич. радиодиагностике, получают с достаточной удельной активностью, используя изотопно-обогащенные мишени. Напр., для получения кальция-47 облучают мишень, обогащенную по кальцию-46 с 0,003 до 10-20%, для получения железа-59 - мишень с железом-58, обогащенным с 0,31 до 80%, для получения ртути-197 - мишень с ртутью-196, обогащенной с 0,15 до 40%, и т. д.

В реакторе гл. обр. получают радионуклиды с избытком нейтронов, распадающиеся с бета-мирус_излучением. Нейтронодефицитные радионуклиды, которые образуются в ядерных реакциях на заряженных частицах (p, d, альфа) и фотонах и распадаются с испусканием позитронов или посредством захвата электронов, в большинстве случаев получают на циклотронах, линейных ускорителях протонов и электронов (в последнем случае используется тормозное излучение) при энергиях ускоряемых частиц порядка десятков и сотен МэВ. Так получают для мед. целей радионуклиды по реакциям: 51 V (р, n) 51 Cr, 67 Zn (р, n) 67 Ga, 109 Ag (α, 2n) 111 In, 44 Ca (γ, p) 43 K, 68 Zn (γ, p) 67 Cu и др. Важным преимуществом такого способа получения радионуклидов является то, что они, имея, как правило, иную хим. природу, чем материал облучаемой мишени, могут быть выделены из последней без носителя. Это позволяет получать нужные радиофарм. препараты с высокой удельной активностью и радионуклидной чистотой.

Для получения многих короткоживущих радионуклидов непосредственно в клинических учреждениях используют так наз. изотопные генераторы, содержащие долгоживущий материнский радионуклид, при распаде к-рого образуется нужный короткоживущий дочерний радионуклид, напр. 99m Tc, 87m Sr, 113m In, 132 I. Последний может быть многократно выделен из генератора в течение времени жизни материнского нуклида (см. Генераторы радиоактивных изотопов).

Применение изотопов в биологии и медицине. Радиоактивные и стабильные И. широко применяются в научных исследованиях. В качестве метки их используют для приготовления изотопных индикаторов (см. Меченые соединения) - веществ и соединений, имеющих отличный от природного изотопный состав. Методом изотопных индикаторов исследуют распределение, пути и характер перемещения меченых веществ в различных средах и системах, проводят их количественный анализ, изучают строение хим. соединений и биологически активных веществ, механизмы различных динамических процессов, в т. ч. их метаболизм в организме растений, животных и человека (см. Радиоизотопное исследование). С помощью метода изотопных индикаторов проводят исследования в биохимии (изучение обмена веществ, строения и механизма биосинтеза белков, нуклеиновых к-т, жиров и углеводов в живом организме, скорости протекания биохим, реакций и т. д.); в физиологии (миграции ионов и различных веществ, процессов всасывания из жел.-киш. тракта жиров и углеводов, экскреции, кровообращения, поведения и роли микроэлементов и т. д.); в фармакологии и токсикологии (исследование поведения лекарственных препаратов и токсических веществ, их всасывания, путей и скорости накопления, распределения, выведения, механизма действия и т. д.); в микробиологии, иммунологии, вирусологии (изучение биохимии микроорганизмов, механизмов ферментативных и Иммунохим, реакций, взаимодействия вирусов и клетки, механизмов действия антибиотиков и т. д.); в гигиене и экологии (изучение загрязненности вредными веществами и дезактивации производств и окружающей среды, экологической цепочки различных веществ, их миграции и т. д.). И. применяют и в других медико-биол. исследованиях (для изучения патогенеза различных заболеваний, исследования ранних изменений обмена веществ и т. д.).

В мед. практике радионуклиды применяют для диагностики и лечения различных заболеваний, а также для радиационной стерилизации мед. материалов, изделий и медикаментов. В клиниках используют более 130 радиодиагностических и 20 радиотерапевтических методик с применением открытых радиофарм. препаратов (РФП) и закрытых изотопных источников излучения. В этих целях используют св. 60 радионуклидов, ок. 30 из них - наиболее широко (табл.). Радиодиагностические препараты позволяют получать информацию о функц, и анатомическом состоянии органов и систем организма человека. В основе радиоизотопной диагностики (см.) лежит возможность проследить за биол, поведением меченных радионуклидами хим. веществ и соединений в живом организме без нарушения его целостности и изменения функций. Введение нужного радиоизотопа соответствующего элемента в структуру хим. соединения, практически не изменяя его свойства, позволяет следить за его поведением в живом организме путем наружного детектирования излучения И., в чем и состоит одно из очень важных преимуществ метода радиоизотопной диагностики.

Динамические показатели поведения меченого соединения дают возможность оценить функц, состояние исследуемого органа или системы. Так, по степени разбавления РФП с 24 Na, 42 K, 51 Cr, 52 Fe, 131 I и др. в жидких средах определяют объем циркулирующей крови, эритроцитов, обмен альбумина, железа, водный обмен электролитов и др. По показателям накопления, перемещения и выведения РФП в органах, системах организма или в очаге поражения можно оценить состояние центральной и периферической гемодинамики, определить функцию печени, почек, легких, изучить йодный обмен и т. п. РФП с радиоизотопами йода и технеция позволяют исследовать все функции щитовидной железы. С помощью 99м Tc, 113m In, 123 I, 131 I, 133 Xe можно провести всестороннее исследование легких - изучить распределение кровотока, состояние вентиляции легких и бронхов. РФП с 43 K, 86 Rb, 99м Тс, 67 Ga, 131 I, 113m In, 197 Hg и др. дают возможность определить кровоток и кровоснабжение головного мозга, сердца, печени, почек и других органов. Радиоактивные коллоидные р-ры и некоторые йодорганические препараты позволяют оценить состояние полигональных клеток и гепатоцитов (купферовских клеток) и антитоксической функции печени. С помощью радиоизотопного сканирования проводят анатомо-топографическое изучение и определение наличия, величины, формы и положения объемных поражений печени, почек, костного мозга, щитовидной, паращитовидной и слюнных желез, легких, лимф, узлов; радионуклиды 18 F, 67 Ga, 85 Sr, 87M Sr, 99M Tc позволяют исследовать заболевания скелета и т. д.

В СССР разработаны и введены в действие нормы радиационной безопасности для пациентов при использовании радиоактивных веществ с диагностической целью, которые строго регламентируют эти процедуры с точки зрения допустимых уровней облучения. Благодаря этому, а также рациональному выбору методов и аппаратуры для разных видов обследований и применению в РФП по возможности короткоживущих радионуклидов, обладающих благоприятными характеристиками излучения в отношении эффективности их регистрации при минимальном лучевом воздействии, лучевые нагрузки на организм пациента при радиоизотопных диагностических процедур ах гораздо ниже доз, получаемых при рентгенол, обследованиях, и в большинстве случаев не превышают сотых и десятых долей рада.

В 70-х гг. 20 в. радиоизотопные препараты стали шире применяться для исследований in vitro, в основном - для иммунохим. анализа. Радиоиммунохим. методы основаны на высокоспецифичной иммунохим. реакции антиген - антитело, в результате к-рой образуется устойчивый комплекс из антитела и антигена. После отделения образующегося комплекса от непрореагировавших антител или антигенов проводят количественное определение путем измерения их радиоактивности. Использование антигенов или антител, меченных радиоизотопами, напр. 125 I, повышает чувствительность иммунохим. тестов в десятки и сотни раз. С помощью этих тестов можно определить содержание в организме гормонов, антител, антигенов, энзимов, ферментов, витаминов и других биологически активных веществ в концентрациях до 0,1 мг/мл. Таким образом удается определять не только различные патол, состояния, но и весьма малые изменения, отражающие начальные стадии заболевания. Напр., эти методики успешно применяют для ранней диагностики in vitro сахарного диабета, инфекционного гепатита, нарушений углеводного обмена, некоторых аллергических и ряда других заболеваний. Такие радиоизотопные тесты не только чувствительнее, проще, но и позволяют проводить массовые исследования и совершенно безопасны для пациентов (см. Pадиоизотопная диагностика).

С леч. целью РФП и радионуклидные источники излучения применяются гл. обр. в онкологии, а также при лечении воспалительных заболеваний, экзем и др. (см. Лучевая терапия). Для этих целей используются как открытые РФП, вводимые внутрь организма, в ткани, серозные полости, полости суставов, внутривенно, внутриартериально и в лимф, систему, так и закрытые источники излучения для наружной, внутриполостной и внутритканевой терапии. С помощью соответствующих РФП, гл. обр. коллоидов и суспензий, содержащих 32 P, 90 Y, 131 I, 198 Au и другие радионуклиды, лечат заболевания кроветворной системы и различные опухоли, воздействуя локально на патол, очаг. При контактном облучении (дерматол, и офтальмол. бета-аппликаторы) применяют 32 P, 90 Sr, 90 Y, 147 Pm, 204 Tl, в дистанционных гамма-терапевтических аппаратах - источники 60 Co или 137 Cs высокой активности (сотни и тысячи кюри). Для внутритканевого и внутриполостного облучения используют иглы, гранулы, проволоку и другие специальные типы закрытых источников с 60 Co, 137 Cs, 182 Ta, 192 Ir, 198 Au (см. Pадиоактивные препараты).

Радиоактивные нуклиды используются также для стерилизации материалов, изделий мед. назначения и лекарственных средств. Практическое применение радиационной стерилизации стало возможным с 50-х гг., когда появились мощные источники ионизирующих излучений.По сравнению с традиционными методами стерилизации (см.) радиационный метод имеет ряд преимуществ. Поскольку при обычной стерилизующей дозе излучения (2-3 Мрад) не возникает значительного повышения температуры облучаемого объекта, становится возможной радиационная стерилизация термолабильных объектов, в т. ч. биол, препаратов и изделий из некоторых видов пластиков. Воздействие излучения на облучаемый образец происходит одновременно во всем его объеме, и стерилизация осуществляется с высокой степенью надежности. При этом для контроля используют цветовые индикаторы полученной дозы, помещаемые на поверхности упаковки стерилизуемого объекта. Мед. изделия и средства стерилизуются в конце технол. цикла уже в готовом виде и в герметической упаковке, в т. ч. и из полимерных материалов, что исключает необходимость создания строго асептических условий производства и гарантирует стерильность после выпуска изделий предприятием. Радиационная стерилизация особенно эффективна для мед. изделий разового пользования (шприцы, иглы, катетеры, перчатки, шовные и перевязочные материалы, системы для взятия и переливания крови, биопрепараты, хирургические инструменты и т. д.), неинъекционных лекарственных средств, таблеток и мазей. При радиационной стерилизации лекарственных р-ров следует считаться с возможностью их радиационного разложения, ведущего к изменению состава и свойств (см. Стерилизация, холодная).

Токсикология радиоактивных изотопов - раздел токсикологии, изучающий влияние инкорпорированных радиоактивных веществ на живые организмы. Основными задачами ее являются: установление допустимых уровней содержания и поступления радионуклидов в организм человека с воздухом, водой и продуктами питания, а также степени безвредности РВ, вводимых в организм при клин, радиодиагностических исследованиях; выяснение специфики поражения радионуклидами в зависимости от характера их распределения, энергии и вида излучения, периода полураспада, дозы, путей и ритма поступления и изыскание эффективных средств для профилактики поражения.

Наиболее глубоко исследуется влияние на организм человека радионуклидов, широко используемых в промышленности, научных и мед. исследованиях, а также образующихся в результате расщепления ядерного горючего.

Токсикология радиоактивных изотопов органически связана с радиобиологией (см.), радиационной гигиеной (см.) и медицинской радиологией (см.).

Радиоактивные вещества могут проникать в организм человека через дыхательные пути, жел.-киш. тракт, кожу, раневые поверхности, а при инъекциях - через кровеносные сосуды, мышечную ткань, суставные поверхности. Характер распределения радионуклидов в организме зависит от основных хим. свойств элемента, формы вводимого соединения, пути поступления и физиол, состояния организма.

Обнаружены довольно существенные различия в распределении и путях выведения отдельных радионуклидов. Растворимые соединения Ca, Sr, Ва, Ra, Y, Zr избирательно накапливаются в костной ткани; La, Ce, Pr, Pu, Am, Cm, Cf, Np - в печени и костной ткани; K, Cs, Rb - в мышечной ткани; Nb, Ru, Te, Po распределяются сравнительно равномерно, хотя и имеют тенденцию к накоплению в ретикулоэндотелиальной ткани селезенки, костного мозга, надпочечниках и лимф, узлах; I и At - в щитовидной железе.

Распределение в организме элементов, относящихся к определенной группе периодической системы Менделеева, имеет много общего. Элементы первой основной группы (Li, Na, К, Rb, Cs) полностью всасываются из кишечника, сравнительно равномерно распределяются по органам и выделяются преимущественно с мочой. Элементы второй основной группы (Ca, Sr, Ba, Rа) хорошо всасываются из кишечника, избирательно откладываются в скелете, выделяются в несколько больших количествах с калом. Элементы третьей основной и четвертой побочной групп, в т. ч. легкие лантаниды, актиниды и трансурановые элементы, практически не всасываются из кишечника, как правило, избирательно откладываются в печени и в меньшей мере в скелете, выделяются преимущественно с калом. Элементы пятой и шестой основной групп периодической системы, за исключением Ро, сравнительно хорошо всасываются из кишечника и выводятся почти исключительно с мочой в течение первых суток, благодаря чему в органах обнаруживаются в сравнительно небольших количествах.

Отложение радионуклидов в легочной ткани при ингаляции зависит от размера вдыхаемых частиц и их растворимости. Чем крупнее аэрозоли, тем большая доля их задерживается в носоглотке и меньшая проникает в легкие. Медленно покидают легкие плохо растворимые соединения. Высокая концентрация таких радионуклидов часто обнаруживается в лимф, узлах корней легких. Очень быстро всасываются в легких окись трития, растворимые соединения щелочных и щелочноземельных элементов. Медленно всасываются в легких Pu, Am, Се, Cm и другие тяжелые металлы.

Нормы радиационной безопасности (НРБ) регламентируют поступление и содержание радионуклидов в организме лиц, работа которых связана с профвредностями, и отдельных лиц из населения, а также населения в целом, допустимые концентрации радионуклидов в атмосферном воздухе и воде, продуктах питания. Эти нормы основаны на величинах предельно допустимых доз (ПДД) облучения, установленных для четырех групп критических органов и тканей (см. Критический орган , Предельно допустимые дозы).

Для лиц, работающих в условиях профвредностей, принятая величина ПДД облучения всего тела, гонад и красного костного мозга равна 5 бэр/год, мышечной и жировой тканей, печени, почек, селезенки, жел.-киш. тракта, легких, хрусталика глаз - 15 бэр/год, костной ткани, щитовидной железы и кожи -30 бэр/год, кистей рук, предплечий, лодыжек и стоп -75 бэр/год.

Нормы для отдельных лиц из населения рекомендованы в 10 раз ниже, чем для лиц, работающих в условиях профвредностей. Облучение всего населения регламентируется генетически значимой дозой, к-рая не должна превышать 5 бэр за 30 лет. В эту дозу не входят возможные дозы облучения, обусловленные мед. процедурами и естественным радиационным фоном.

Величина годового предельно допустимого поступления растворимых и нерастворимых соединений (мкКи/год) через органы дыхания для персонала, предел годового поступления радионуклидов через органы дыхания и пищеварения для отдельных лиц из населения, среднегодовые допустимые концентрации (СДК) радионуклидов в атмосферном воздухе и воде (кюри/л) для отдельных лиц из населения, а также содержание радионуклидов в критическом органе, соответствующее предельно допустимому уровню поступления (мкКи) для персонала, приведены в нормативах.

При расчете допустимых уровней поступления радионуклидов в организм учитывается также нередко встречающийся неравномерный характер распределения радионуклидов в отдельных органах и тканях. Неравномерное распределение радионуклидов, приводящее к созданию высоких локальных доз, лежит в основе высокой токсичности альфа-излучателей, чему в немалой степени способствуют отсутствие восстановительных процессов и практически полная суммация повреждений, вызываемых этим видом излучения.

Обозначения: β- - бета-излучение; β+ - позитронное излучение; n - нейтрон; p - протон; d - дейтрон; t - тритон; α - альфа-частица; Э.З. - распад путем захвата электрона; γ - гамма-излучение (как правило, приведены лишь основные линии γ-спектра); И. П. - изомерный переход; U (n, f) - реакция деления урана. Указанный изотоп выделяют из смеси продуктов деления; 90 Sr-> 90 Y - получение дочернего изотопа (90 Y) в результате распада материнского (90 Sr), в т. ч. с помощью изотопного генератора.

Библиография: Иванов И. И. и др. Радиоактивные изотопы в медицине и биологии, М., 1955; К а м e н М. Радиоактивные индикаторы в биологии, пер. с англ., М., 1948, библиогр.; Левин В. И. Получение радиоактивных изотопов, М., 1972; Нормы радиационной безопасности (НРБ-69), М., 1972; Получение в реакторе и применение короткоживущих изотопов, пер. с ин., под ред. В. В. Бочкарева и Б. В. Курчатова, М., 1965; Производство изотопов, под ред. В. В. Бочкарева, М., 1973; Селинов И. П. Атомные ядра и ядерные превращения, т. 1, М.-Л., 1951, библиогр.; Туманян М. А. и К а у-шанский Д. А. Радиационная стерилизация, М., 1974, библиогр.; Фатеева М. Н. Очерки радиоизотопной диагностики, М., 1960, библиогр.; Xeвеши Г. Радиоактивные индикаторы, пер. с англ., М., 1950, библиогр.; Dynamic studies with radioisotopes in medicine 1974, Proc, symp., v. 1-2, Vienna, IAEA, 1975; L e d e г e г Ch. М., Hollander J. M. a. P e г 1 m а n I. Tables of isotopes, N. Y., 1967; Silver S. Radioactive isotopes in clinical medicine, New Engl. J. Med., v. 272, p. 569, 1965, bibliogr.

В. В. Бочкарев; Ю. И. Москалев (токе.), составитель табл. В. В. Бочкарев.

Повторите основные положения темы «Основные понятия химии» и решите предложенные задачи. Используйте №№6-17.

Основные положения

1. Вещество (простое и сложное) – это любая совокупность атомов и молекул, находящаяся в определённом агрегатном состоянии.

Превращения веществ, сопровождающиеся изменением их состава и (или) строения, называется химическими реакциями .

2. Структурные единицы вещества :

· Атом – наименьшая элекронейтральная частица химического элемента и простого вещества, обладающая всеми его химическими свойствами и далее физически и химически неделимая.

· Молекула – наименьшая электронейтральная частица вещества, обладающая всеми его химическими свойствами, физически неделимая, но делимая химически.

3. Химический элемент – это вид атомов с определённым зарядом ядра.

4. Состав атома :

Частица

Как определить?

Заряд

Масса

Кл

условные единицы

а.е.м.

Электрон

По порядковому

Номеру (N)

1.6 ∙ 10 -19

9.10 ∙ 10 -28

0.00055

Протон

По порядковому

номеру (N)

1.6 ∙ 10 -19

1.67 ∙ 10 -24

1.00728

Нейтрон

Ar – N

1.67 ∙ 10 -24

1.00866

5. Состав атомного ядра :

· В состав ядра входят элементарные частицы (нуклоны ) –

протоны (1 1 p ) и нейтроны (1 0 n ).

· Т.к. практически вся масса атома сосредоточена в ядре и m p m n ≈ 1 а.е.м , то округлённое значение A r химического элемента равно общему числу нуклонов в ядре.

7. Изотопы – разновидность атомов одного и того же химического элемента, отличающиеся друг от друга только своей массой.

· Обозначение изотопов: слева от символа элемента указывают массовое число (вверху) и порядковый номер элемента (внизу)

· Почему у изотопов разная масса?

Задание: Определите атомный состав изотопов хлора: 35 17 Cl и 37 17 Cl ?

· Изотопы имеют разную массу из-за различного числа нейтронов в их ядрах.

8. В природе химические элементы существуют в виде смесей изотопов.

Изотопный состав одного и того же химического элемента выражают в атомных долях (ω ат.) , которые указывают какую часть составляет число атомов данного изотопа от общего числа атомов всех изотопов данного элемента, принятого за единицу или 100%.

Например:

ω ат (35 17 Cl ) = 0,754

ω ат (37 17 Cl ) = 0,246

9. В таблице Менделеева приведены средние значения относительных атомных масс химических элементов с учётом их изотопного состава. Поэтому A r , указанные в таблице являются дробными.

A r ср = ω ат.(1) Ar (1) + … + ω ат.( n ) Ar ( n )

Например:

A r ср (Cl ) = 0,754 ∙ 35 + 0,246 ∙ 37 = 35,453

10. Задача для решения:

№1. Определите относительную атомную массу бора, если известно, что молярная доля изотопа 10 В составляет – 19,6 %, а изотопа 11 В – 80,4 %.

11. Массы атомов и молекул очень малы. В настоящее время в физике и химии принята единая система измерения.

1 а.е.м. = m (а.е.м.) = 1/12 m (12 C ) = 1,66057 ∙ 10 -27 кг = 1,66057 ∙ 10 -24 г .

Абсолютные массы некоторых атомов:

m ( C ) =1,99268 ∙ 10 -23 г

m ( H ) =1,67375 ∙ 10 -24 г

m ( O ) =2,656812 ∙ 10 -23 г

A r – показывает, во сколько раз данный атом тяжелее 1/12 части атома 12 С. M r ∙ 1,66 ∙ 10 -27 кг

13. Число атомов и молекул в обычных образцах веществ очень велико, поэтому при характеристике количества вещества используют единицу измерения – моль .

· Моль (ν) – единица количества вещества, которое содержит столько же частиц (молекул, атомов, ионов, электронов), сколько атомов содержится в 12 г изотопа 12 C

· Масса 1 атома 12 C равна 12 а.е.м., поэтому число атомов в 12 г изотопа 12 C равно:

N A = 12 г / 12 ∙ 1,66057 ∙ 10 -24 г = 6,0221 ∙ 10 23

· Физическая величина N A называется постоянной Авогадро (число Авогадро) и имеет размерность[ N A ] = моль -1 .

14. Основные формулы:

M = M r = ρ ∙ V m (ρ – плотность; V m – объём при н.у.)

Задачи для самостоятельного решения

№1. Вычислите число атомов азота в 100г карбоната аммония, содержащего 10% неазотистых примесей.

№2. При нормальных условиях 12 л газовой смеси, состоящей из аммиака и углекислого газа, имеют массу 18 г. Сколько литров каждого из газов содержит смесь?

№3. При действии избытка соляной кислоты на 8,24 г смеси оксида марганца (IV ) с неизвестным оксидом МО 2 , который не реагирует с соляной кислотой, получено 1,344 л газа при н.у. Входе другого опыта установлено, что мольное отношение оксида марганца (IV ) к неизвестному оксиду равно 3:1. Установите формулу неизвестного оксида и вычислите его массовую долю в смеси.

Изучая явление радиоактивности, ученые в первое десятилетие XX в. открыли большое количество радиоактивных веществ - около 40. Их было значительно больше, чем свободных мест в периодической системе элементов в промежутке между висмутом и ураном. Природа этих веществ вызывала споры. Одни исследователи считали их самостоятельными химическими элементами, но в таком случае оказывался неразрешимым вопрос об их размещении в таблице Менделеева. Другие вообще отказывали им в праве называться элементами в классическом понимании. В 1902 г. английский физик Д. Мартин назвал такие вещества радиоэлементами. По мере их изучения выяснилось, что некоторые радиоэлементы имеют совершенно одинаковые химические свойства, но различаются по величинам атомных масс. Это обстоятельство противоречило основным положениям периодического закона. Разрешил противоречие английский ученый Ф. Содди. В 1913 г. он назвал химически сходные радиоэлементы изотопами (от греческих слов, означающих «одинаковый» и «место»), т. е. занимающими одно и то же место в периодической системе. Радиоэлементы оказались изотопами естественных радиоактивных элементов. Все они объединяются в три радиоактивных семейства, родоначальниками которых являются изотопы тория и урана.

Изотопы кислорода. Изобары калия и аргона (изобары - атомы различных элементов с одинаковым массовым числом).

Число стабильных изотопов для четных и нечетных элементов.

Вскоре выяснилось, что и у остальных стабильных химических элементов тоже есть изотопы. Основная заслуга в их открытии принадлежит английскому физику Ф. Астону. Он обнаружил стабильные изотопы у многих элементов.

С современной точки зрения изотопы - это разновидности атомов химического элемента: у них разная атомная масса, но одинаковый заряд ядра.

Их ядра, таким образом, содержат одинаковое число протонов, но различное число нейтронов. Например, природные изотопы кислорода с Z = 8 содержат в ядрах соответственно 8, 9 и 10 нейтронов. Сумма чисел протонов и нейтронов в ядре изотопа называется массовым числом A. Следовательно, массовые числа указанных изотопов кислорода 16, 17 и 18. Ныне принято такое обозначение изотопов: слева внизу от символа элемента дается величина Z, слева вверху - величина A. Например: 16 8 O, 17 8 O, 18 8 O.

После открытия явления искусственной радиоактивности с помощью ядерных реакций было получено около 1800 искусственных радиоактивных изотопов для элементов с Z от 1 до 110. У подавляющего большинства искусственных радиоизотопов очень малые периоды полураспада, измеряемые секундами и долями секунд; лишь немногие имеют сравнительно большую продолжительность жизни (например, 10 Ве - 2,7 10 6 лет, 26 Al - 8 10 5 лет и т. д.).

Стабильные элементы представлены в природе примерно 280 изотопами. Однако некоторые из них оказались в слабой степени радиоактивными, с огромными периодами полураспада (например, 40 K, 87 Rb, 138 La, l47 Sm, 176 Lu, 187 Re). Продолжительность жизни этих изотопов столь велика, что позволяет рассматривать их как стабильные.

В мире стабильных изотопов еще немало проблем. Так, неясно, почему их количество у разных элементов столь сильно различается. Около 25% стабильных элементов (Be, F, Na, Al, P, Sc, Mn, Co, As, Y, Nb, Rh, I, Cs, Pt, Tb, Ho, Tu, Ta, Au) представлены в природе лишь одним видом атомов. Это так называемые элементы-одиночки. Интересно, что все они (кроме Be) имеют нечетные значения Z. И вообще для нечетных элементов число стабильных изотопов не превышает двух. Напротив, некоторые элементы с четными Z состоят из большого числа изотопов (например, Xe имеет 9, Sn - 10 стабильных изотопов).

Совокупность стабильных изотопов у данного элемента называют плеядой. Содержание их в плеяде нередко сильно колеблется. Интересно отметить, что больше всего содержание изотопов с величинами массовых чисел, кратными четырем (12 C, 16 O, 20 Ca и т. д.), хотя есть и исключения из этого правила.

Отрытие стабильных изотопов позволило разгадать многолетнюю загадку атомных масс - их отклонение от целых чисел, объясняющееся различным процентным содержанием стабильных изотопов элементов в плеяде.

В ядерной физике известно понятие «изобары». Изобарами называют изотопы различных элементов (т. е. с разными значениями Z), имеющие одинаковые массовые числа. Изучение изобаров способствовало установлению многих важных закономерностей поведения и свойств атомных ядер. Одну из таких закономерностей выражает правило, сформулированное советским химиком С. А. Щукаревым и иемецким физиком И. Маттаухом. Оно гласит: если лва изобара различаются по значениям Z на 1, то один из них обязательно будет радиоактивным. Классический пример пары изобаров - 40 18 Ar - 40 19 K. В ней изотоп калия радиоактивен. Правило Щукарева - Маттауха позволило объяснить, почему отсутствуют стабильные изотопы у элементов технеция (Z = 43) и прометия (Z = 61). Поскольку они имеют нечетные значения Z, то нельзя было для них ожидать более двух стабильных изотопов. Но оказалось, что изобары технеция и прометия, соответственно изотопы молибдена (Z = 42) и рутения (Z = 44), неодима (Z = 60) и самария (Z = 62), представлены в природе стабильными разновидностями атомов в большом диапазоне массовых чисел. Тем самым физические закономерности накладывают запрет на существование стабильных изотопов технеция и прометия. Вот почему эти элементы фактически не существуют в природе и их пришлось синтезировать искусственно.

Ученые уже давно пытаются разработать периодическую систему изотопов. Конечно, в её основе лежат другие принципы, нежели в основе периодической системы элементов. Но эти попытки пока не привели к удовлетворительным результатам. Правда, физики доказали, что последовательность заполнения протонных и нейтронных оболочек в атомных ядрах в принципе подобна построению электронных оболочек и подоболочек в атомах (см. Атом).

Электронные оболочки у изотопов данного элемента построены совершенно одинаково. Поэтому практически тождественны их химические и физические свойства. Только изотопы водорода (протий и дейтерий) и их соединения обнаруживают заметные различия в свойствах. Например, тяжелая вода (D 2 O) замерзает при +3,8, кипит при 101,4 °C, имеет плотность 1,1059 г/см 3 , не поддерживает жизни животных и растительных организмов. При электролизе воды на водород и кислород разлагаются преимущественно молекулы H 2 0, тогда как молекулы тяжелой воды остаются в электролизере.

Разделение изотопов других элементов - задача чрезвычайно сложная. Тем не менее во многих случаях необходимы изотопы отдельных элементов со значительно измененным по сравнению с природным содержанием. Например, при решении проблемы атомной энергии возникла необходимость разделения изотопов 235 U и 238 U. Для этой цели сначала был применен метод масс-спектрометрии, с помощью которого в 1944 г. в США были получены первые килограммы урана‑235. Однако этот метод оказался слишком дорогим и был заменен методом газовой диффузии, в котором использовался UF 6 . Сейчас существует несколько методов разделения изотопов, однако все они достаточно сложны и дороги. И всё‑таки проблема «разделения неразделимого» успешно решается.

Появилась новая научная дисциплина - химия изотопов. Она изучает поведение различных изотопов химических элементов в химических реакциях и процессы изотопного обмена. В результате этих процессов происходит перераспределение изотопов данного элемента между реагирующими веществами. Вот простейший пример: H 2 0 + HD = HD0 + H 2 (молекула воды обменивает атом протия на атом дейтерия). Развивается и геохимия изотопов. Она исследует колебания изотопного состава разных элементов в земной коре.

Широчайшее применение находят так называемые меченые атомы - искусственные радиоактивные изотопы стабильных элементов или стабильные изотопы. С помощью изотопных индикаторов - меченых атомов - изучают пути перемещения элементов в неживой и живой природе, характер распределения веществ и элементов в различных объектах. Изотопы применяются в ядерной технике: как материалы конструкций ядерных реакторов; в качестве ядерного горючего (изотопы тория, урана, плутония); в термоядерном синтезе (дейтерий, 6 Li, 3 He). Радиоактивные изотопы также широко используются в качестве источников излучений.

Похожие статьи